Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 19 de 19
1.
Anal Chem ; 95(36): 13509-13518, 2023 09 12.
Article En | MEDLINE | ID: mdl-37639578

The accurate in-field titration of multiple pathogens is essential to efficiently describe and monitor environmental or biological contamination, isolate, act, and treat adequately. This underscores the requirement of portable, fast, quantitative, and multiplexed detection technologies, which, however, have not been properly developed so far, notably because it has been hindered by the phenomenon of cross-reactivity. In this work, we proposed a new analytical method based on the imaging through a portable device of lanthanide-based nanoparticles (YVO4:Eu) for spatially multiplexed detection, relying on a multiparameter analysis, i.e., a simultaneous analysis of all of the luminescence signals through the comparison to a calibration surface built in the presence of multiple analytes of interest. We then demonstrated the possibility to simultaneously quantify by multiplexed lateral flow assay (xLFA) the three enterotoxins SEG, SEH, and SEI in unknown mixtures, over two concentration decades (from a dozen of pg·mL-1 to few ng·mL-1). Assays were performed in less than an hour (25 min of strip migration followed by 30 min of drying at room temperature), the time during which the presence of the operator was not required for more than 5 min, in order to dip the strip and have it imaged by the reader. The concepts of nominal concentration recovery, coefficient of variation (CV), limit of blank (LOB), and limit of detection (LOD) were discussed in detail in the context of multiplexed assays. With our new definitions, quantitative results demonstrated a high recovery of the nominal concentrations (115%), reliability (CV = 20%), and sensitivity (LOBs of 3, 27, and 6 pg·mL-1 for SEG, SEH, and SEI respectively, and LODs of 6, 48, and 11 pg·mL-1 for SEG, SEH, and SEI, respectively). Based on this method, we observed an increase in sensitivity of 100 compared to the other multiplexed LFA labeled with gold particles and we approached the sensitivity of the simplex enzyme-linked immunosorbent assay (ELISA) performed with the same capture and detection antibodies. To conclude, our results, which are applicable to virtually any kind of multiplexed test, pave the way to the next generation of in-field analytical immunoassays by providing fast, quantitative, and highly sensitive multiplexed detection of biomarkers or pathogens.


Antibodies , Biological Assay , Reproducibility of Results , Cross Reactions , Calibration
3.
Nat Commun ; 10(1): 3303, 2019 07 24.
Article En | MEDLINE | ID: mdl-31341160

The mechanisms driving the development of extracapillary lesions in focal segmental glomerulosclerosis (FSGS) and crescentic glomerulonephritis (CGN) remain poorly understood. A key question is how parietal epithelial cells (PECs) invade glomerular capillaries, thereby promoting injury and kidney failure. Here we show that expression of the tetraspanin CD9 increases markedly in PECs in mouse models of CGN and FSGS, and in kidneys from individuals diagnosed with these diseases. Cd9 gene targeting in PECs prevents glomerular damage in CGN and FSGS mouse models. Mechanistically, CD9 deficiency prevents the oriented migration of PECs into the glomerular tuft and their acquisition of CD44 and ß1 integrin expression. These findings highlight a critical role for de novo expression of CD9 as a common pathogenic switch driving the PEC phenotype in CGN and FSGS, while offering a potential therapeutic avenue to treat these conditions.


Kidney Diseases/pathology , Tetraspanin 29/physiology , Animals , Cell Movement/genetics , Cell Proliferation/genetics , Disease Progression , Female , Glomerulonephritis/genetics , Glomerulonephritis/metabolism , Glomerulonephritis/pathology , Glomerulosclerosis, Focal Segmental/genetics , Glomerulosclerosis, Focal Segmental/metabolism , Glomerulosclerosis, Focal Segmental/pathology , Humans , Kidney Diseases/metabolism , Male , Mice , Mice, Inbred C57BL , Tetraspanin 29/genetics , Tetraspanin 29/metabolism
4.
Sci Rep ; 7: 44770, 2017 03 20.
Article En | MEDLINE | ID: mdl-28317892

The current trend for Magnetic Resonance Imaging points towards higher magnetic fields. Even though sensitivity and resolution are increased in stronger fields, T1 contrast is often reduced, and this represents a challenge for contrast agent design. Field-dependent measurements of relaxivity are thus important to characterize contrast agents. At present, the field-dependent curves of relaxivity are usually carried out in the field range of 0 T to 2 T, using fast field cycling relaxometers. Here, we employ a high-speed sample shuttling device to switch the magnetic fields experienced by the nuclei between virtually zero field, and the center of any commercial spectrometer. We apply this approach on rare-earth (mixed Gadolinium-Europium) vanadate nanoparticles, and obtain the dispersion curves from very low magnetic field up to 11.7 T. In contrast to the relaxivity profiles of Gd chelates, commonly used for clinical applications, which display a plateau and then a decrease for increasing magnetic fields, these nanoparticles provide maximum contrast enhancement for magnetic fields around 1-1.5 T. These field-dependent curves are fitted using the so-called Magnetic Particle (MP) model and the extracted parameters discussed as a function of particle size and composition. We finally comment on the new possibilities offered by this approach.

6.
PLoS One ; 9(11): e113493, 2014.
Article En | MEDLINE | ID: mdl-25412080

As DNA repair enzymes are essential for preserving genome integrity, understanding their substrate interaction dynamics and the regulation of their catalytic mechanisms is crucial. Using single-molecule imaging, we investigated the association and dissociation kinetics of the bipolar endonuclease NucS from Pyrococcus abyssi (Pab) on 5' and 3'-flap structures under various experimental conditions. We show that association of the PabNucS with ssDNA flaps is largely controlled by diffusion in the NucS-DNA energy landscape and does not require a free 5' or 3' extremity. On the other hand, NucS dissociation is independent of the flap length and thus independent of sliding on the single-stranded portion of the flapped DNA substrates. Our kinetic measurements have revealed previously unnoticed asymmetry in dissociation kinetics from these substrates that is markedly modulated by the replication clamp PCNA. We propose that the replication clamp PCNA enhances the cleavage specificity of NucS proteins by accelerating NucS loading at the ssDNA/dsDNA junctions and by minimizing the nuclease interaction time with its DNA substrate. Our data are also consistent with marked reorganization of ssDNA and nuclease domains occurring during NucS catalysis, and indicate that NucS binds its substrate directly at the ssDNA-dsDNA junction and then threads the ssDNA extremity into the catalytic site. The powerful techniques used here for probing the dynamics of DNA-enzyme binding at the single-molecule have provided new insight regarding substrate specificity of NucS nucleases.


Archaeal Proteins/metabolism , DNA, Single-Stranded/metabolism , DNA/metabolism , Flap Endonucleases/metabolism , Archaeal Proteins/chemistry , Catalytic Domain , DNA Replication , Flap Endonucleases/chemistry , Kinetics , Manganese/chemistry , Photobleaching , Proliferating Cell Nuclear Antigen/metabolism , Pyrococcus abyssi/enzymology , Substrate Specificity , Temperature , Viscosity
7.
ACS Nano ; 8(11): 11126-37, 2014 Nov 25.
Article En | MEDLINE | ID: mdl-25290552

Collecting information on multiple pathophysiological parameters is essential for understanding complex pathologies, especially given the large interindividual variability. We report here multifunctional nanoparticles which are luminescent probes, oxidant sensors, and contrast agents in magnetic resonance imaging (MRI). Eu(3+) ions in an yttrium vanadate matrix have been demonstrated to emit strong, nonblinking, and stable luminescence. Time- and space-resolved optical oxidant detection is feasible after reversible photoreduction of Eu(3+) to Eu(2+) and reoxidation by oxidants, such as H2O2, leading to a modulation of the luminescence emission. The incorporation of paramagnetic Gd(3+) confers in addition proton relaxation enhancing properties to the system. We synthesized and characterized nanoparticles of either 5 or 30 nm diameter with compositions of GdVO4 and Gd0.6Eu0.4VO4. These particles retain the luminescence and oxidant detection properties of YVO4:Eu. Moreover, the proton relaxivity of GdVO4 and Gd0.6Eu0.4VO4 nanoparticles of 5 nm diameter is higher than that of the commercial Gd(3+) chelate compound Dotarem at 20 MHz. Nuclear magnetic resonance dispersion spectroscopy showed a relaxivity increase above 10 MHz. Complexometric titration indicated that rare-earth leaching is negligible. The 5 nm nanoparticles injected in mice were observed with MRI to concentrate in the liver and the bladder after 30 min. Thus, these multifunctional rare-earth vanadate nanoparticles pave the way for simultaneous optical and magnetic resonance detection, in particular, for in vivo localization evolution and reactive oxygen species detection in a broad range of physiological and pathophysiological conditions.


Contrast Media/chemistry , Metals, Rare Earth/chemistry , Nanoparticles/chemistry , Oxidants/chemistry , Vanadium/chemistry , Animals , Luminescence , Magnetic Resonance Imaging , Mice , Microscopy, Electron, Transmission , Spectroscopy, Fourier Transform Infrared
9.
Chem Biol ; 21(5): 647-56, 2014 May 22.
Article En | MEDLINE | ID: mdl-24726833

Although reactive oxygen species (ROS) are better known for their harmful effects, more recently, H2O2, one of the ROS, was also found to act as a secondary messenger. However, details of spatiotemporal organization of specific signaling pathways that H2O2 is involved in are currently missing. Here, we use single nanoparticle imaging to measure the local H2O2 concentration and reveal regulation of the ROS response dynamics and organization to platelet-derived growth factor (PDGF) signaling. We demonstrate that H2O2 production is controlled by PDGFR kinase activity and EGFR transactivation, requires a persistent stimulation, and is regulated by membrane receptor diffusion. This temporal filtering is impaired in cancer cells, which may determine their pathological migration. H2O2 subcellular mapping reveals that an external PDGF gradient induces an amplification-free asymmetric H2O2 concentration profile. These results support a general model for the control of signal transduction based only on membrane receptor diffusion and second messenger degradation.


Hydrogen Peroxide/metabolism , Nanoparticles/metabolism , Platelet-Derived Growth Factor/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction , Animals , Cells, Cultured , HeLa Cells , Humans , Male , Mice , Mice, Inbred C57BL
10.
Biophys J ; 105(1): 116-26, 2013 Jul 02.
Article En | MEDLINE | ID: mdl-23823230

We introduce an intrinsically multiplexed and easy to implement method to apply an external force to a biomolecule and thus probe its interaction with a second biomolecule or, more generally, its environment (for example, the cell membrane). We take advantage of the hydrodynamic interaction with a controlled fluid flow within a microfluidic channel to apply a force. By labeling the biomolecule with a nanoparticle that acts as a kite and increases the hydrodynamic interaction with the fluid, the drag induced by convection becomes important. We use this approach to track the motion of single membrane receptors, the Clostridium perfringens ε-toxin (CPεT) receptors that are confined in lipid raft platforms, and probe their interaction with the environment. Under external force, we observe displacements over distances up to 10 times the confining domain diameter due to elastic deformation of a barrier and return to the initial position after the flow is stopped. Receptors can also jump over such barriers. Analysis of the receptor motion characteristics before, during, and after a force is applied via the flow indicates that the receptors are displaced together with their confining raft platform. Experiments before and after incubation with latrunculin B reveal that the barriers are part of the actin cytoskeleton and have an average spring constant of 2.5 ± 0.6 pN/µm before vs. 0.6 ± 0.2 pN/µm after partial actin depolymerization. Our data, in combination with our previous work demonstrating that the ε-toxin receptor confinement is not influenced by the cytoskeleton, imply that it is the raft platform and its constituents rather than the receptor itself that encounters and deforms the barriers formed by the actin cytoskeleton.


Hydrodynamics , Mechanical Phenomena , Nanoparticles , Receptors, Cell Surface/metabolism , Actins/metabolism , Animals , Bacterial Toxins/metabolism , Biomechanical Phenomena , Dogs , Madin Darby Canine Kidney Cells , Membrane Microdomains/metabolism
11.
Biophys J ; 103(8): 1648-56, 2012 Oct 17.
Article En | MEDLINE | ID: mdl-23083707

Nerve growth cones (GCs) are chemical sensors that convert graded extracellular cues into oriented axonal motion. To ensure a sensitive and robust response to directional signals in complex and dynamic chemical landscapes, GCs are presumably able to amplify and filter external information. How these processing tasks are performed remains however poorly known. Here, we probe the signal-processing capabilities of single GCs during γ-Aminobutyric acid (GABA) directional sensing with a shear-free microfluidic assay that enables systematic measurements of the GC output response to variable input gradients. By measuring at the single molecule level the polarization of GABA(A) chemoreceptors at the GC membrane, as a function of the external GABA gradient, we find that GCs act as i), signal amplifiers over a narrow range of concentrations, and ii), low-pass temporal filters with a cutoff frequency independent of stimuli conditions. With computational modeling, we determine that these systems-level properties arise at a molecular level from the saturable occupancy response and the lateral dynamics of GABA(A) receptors.


Growth Cones/physiology , Microfluidic Analytical Techniques , Animals , Growth Cones/metabolism , Rats , Receptors, GABA-A/metabolism , Xenopus , gamma-Aminobutyric Acid/metabolism
12.
ACS Nano ; 5(11): 8488-505, 2011 Nov 22.
Article En | MEDLINE | ID: mdl-21981700

Biomedicine and cell and molecular biology require powerful imaging techniques of the single molecule scale to the whole organism, either for fundamental science or diagnosis. These applications are however often limited by the optical properties of the available probes. Moreover, in cell biology, the measurement of the cell response with spatial and temporal resolution is a central instrumental problem. This has been one of the main motivations for the development of new probes and imaging techniques either for biomolecule labeling or detection of an intracellular signaling species. The weak photostability of genetically encoded probes or organic dyes has motivated the interest for different types of nanoparticles for imaging such as quantum dots, nanodiamonds, dye-doped silica particles, or metallic nanoparticles. One of the most active fields of research in the past decade has thus been the development of rare-earth based nanoparticles, whose optical properties and low cytotoxicity are promising for biological applications. Attractive properties of rare-earth based nanoparticles include high photostability, absence of blinking, extremely narrow emission lines, large Stokes shifts, long lifetimes that can be exploited for retarded detection schemes, and facile functionalization strategies. The use of specific ions in their compositions can be moreover exploited for oxidant detection or for implementing potent contrast agents for magnetic resonance imaging. In this review, we present these different applications of rare-earth nanoparticles for biomolecule detection and imaging in vitro, in living cells or in small animals. We highlight how chemical composition tuning and surface functionalization lead to specific properties, which can be used for different imaging modalities. We discuss their performances for imaging in comparison with other probes and to what extent they could constitute a central tool in the future of molecular and cell biology.


Biological Science Disciplines/methods , Metals, Rare Earth/chemistry , Nanoparticles/chemistry , Animals , Biochemistry , Cell Biology , Humans , Metals, Rare Earth/metabolism , Nanotechnology
13.
PLoS One ; 5(2): e9243, 2010 Feb 22.
Article En | MEDLINE | ID: mdl-20179770

Accurate response to external directional signals is essential for many physiological functions such as chemotaxis or axonal guidance. It relies on the detection and amplification of gradients of chemical cues, which, in eukaryotic cells, involves the asymmetric relocalization of signaling molecules. How molecular events coordinate to induce a polarity at the cell level remains however poorly understood, particularly for nerve chemotaxis. Here, we propose a model, inspired by single-molecule experiments, for the membrane dynamics of GABA chemoreceptors in nerve growth cones (GCs) during directional sensing. In our model, transient interactions between the receptors and the microtubules, coupled to GABA-induced signaling, provide a positive-feedback loop that leads to redistribution of the receptors towards the gradient source. Using numerical simulations with parameters derived from experiments, we find that the kinetics of polarization and the steady-state polarized distribution of GABA receptors are in remarkable agreement with experimental observations. Furthermore, we make predictions on the properties of the GC seen as a sensing, amplification and filtering module. In particular, the growth cone acts as a low-pass filter with a time constant approximately 10 minutes determined by the Brownian diffusion of chemoreceptors in the membrane. This filtering makes the gradient amplification resistant to rapid fluctuations of the external signals, a beneficial feature to enhance the accuracy of neuronal wiring. Since the model is based on minimal assumptions on the receptor/cytoskeleton interactions, its validity extends to polarity formation beyond the case of GABA gradient sensing. Altogether, it constitutes an original positive-feedback mechanism by which cells can dynamically adapt their internal organization to external signals.


Cell Polarity/physiology , Chemoreceptor Cells/physiology , Chemotaxis/physiology , Growth Cones/physiology , Algorithms , Animals , Cells, Cultured , Chemoreceptor Cells/cytology , Chemoreceptor Cells/metabolism , Chemotaxis/drug effects , Computer Simulation , Microtubules/metabolism , Models, Biological , Neurons/cytology , Neurons/metabolism , Neurons/physiology , Quantum Dots , Rats , Receptors, GABA-A/metabolism , Receptors, GABA-A/physiology , gamma-Aminobutyric Acid/pharmacology
14.
Nat Nanotechnol ; 4(9): 581-5, 2009 Sep.
Article En | MEDLINE | ID: mdl-19734931

Low concentrations of reactive oxygen species, notably hydrogen peroxide (H(2)O(2)), mediate various signalling processes in the cell. Production of these signals is highly regulated and a suitable probe is needed to measure these events. Here, we show that a probe based on a single nanoparticle can quantitatively measure transient H(2)O(2) generation in living cells. The Y(0.6)Eu(0.4)VO(4) nanoparticles undergo photoreduction under laser irradiation but re-oxidize in the presence of oxidants, leading to a recovery in luminescence. Our probe can be regenerated and reliably detects intracellular H(2)O(2) with a 30-s temporal resolution and a dynamic range of 1-45 microM. The differences in the timing of intracellular H(2)O(2) production triggered by different signals were also measured using these nanoparticles. Although the probe is not selective towards H(2)O(2), in many signalling processes H(2)O(2) is, however, the dominant oxidant. In conjunction with appropriate controls, this probe is a powerful tool for unravelling pathways that involve reactive oxygen species.


Biosensing Techniques/methods , Europium/chemistry , Hydrogen Peroxide/analysis , Luminescent Measurements/methods , Myocytes, Smooth Muscle/metabolism , Nanoparticles/chemistry , Reactive Oxygen Species/analysis , Animals , Cells, Cultured , Mice , Molecular Probe Techniques , Nanoparticles/ultrastructure , Particle Size
15.
Proc Natl Acad Sci U S A ; 104(27): 11251-6, 2007 Jul 03.
Article En | MEDLINE | ID: mdl-17592112

During development of the nervous system, the tip of a growing axon, the growth cone (GC), must respond accurately to stimuli that direct its growth. This axonal navigation depends on extracellular concentration gradients of numerous guidance cues, including GABA. GCs can detect even weak directional signals, yet the mechanisms underlying this sensitivity remain unclear. Past studies in other eukaryotic chemotactic systems have pointed to the role of the spatial reorganization of the transduction pathway in their sensitive response. Here we have developed a single-molecule assay to observe individual GABA(A) receptors (GABA(A)Rs) in the plasma membrane of nerve GCs subjected to directional stimuli. We report that in the presence of an external GABA gradient GABA(A)Rs redistribute asymmetrically across the GC toward the gradient source. Single-particle tracking of GABA(A)Rs shows that the redistribution results from transient interactions between the receptors and the microtubules. Moreover, the relocalization is accompanied by an enhancement in the asymmetry of intracellular calcium concentration. Altogether, our results reveal a microtubule-dependent polarized reorganization of chemoreceptors at the cell surface and suggest that this polarization serves as an amplification step in GABA gradient sensing by nerve GCs.


Growth Cones/metabolism , Quantum Dots , Receptors, GABA-A/metabolism , gamma-Aminobutyric Acid/metabolism , Animals , Biological Transport, Active/physiology , Cell Polarity/physiology , Cells, Cultured , Chemotaxis/physiology , Growth Cones/chemistry , Growth Cones/physiology , Intracellular Fluid/chemistry , Intracellular Fluid/metabolism , Intracellular Fluid/physiology , Neurons/chemistry , Neurons/cytology , Neurons/metabolism , Rats , Second Messenger Systems/physiology
16.
Methods Mol Biol ; 374: 81-91, 2007.
Article En | MEDLINE | ID: mdl-17237531

The dynamics of membrane proteins in living cells has become a major issue to understand important biological questions such as chemotaxis, synaptic regulation, or signal transduction. The advent of semi-conductor quantum dots (QDs) has opened new perspectives for the study of membrane properties because these new nanomaterials enable measurements at the single molecule level with high signal-to-noise ratio. Probes used until now indeed encounter significant limitations: organic fluorophores and fluorescent proteins rapidly photobleach, whereas gold particles and latex beads, although more stable, are bulky and usually stain only one protein per experiment. In comparison, QDs are bright and photostable fluorescent probes with a size on the order of 10 nm can be used with standard immunochemical methods. We present the experimental protocols and methods of analysis which we used to investigate the dynamics of individual GABAA receptors in the axonal growth cone of spinal neurons in culture. Single QD tracking is nevertheless a general method, suitable to study many transmembrane proteins.


Microscopy, Fluorescence/methods , Quantum Dots , Animals , Axons/chemistry , Axons/metabolism , Cells, Cultured , Growth Cones/chemistry , Growth Cones/metabolism , Immunohistochemistry , Neurons/cytology , Neurons/metabolism , Rats , Receptors, GABA-A/chemistry , Receptors, GABA-A/metabolism
17.
Biophys J ; 92(2): 654-60, 2007 Jan 15.
Article En | MEDLINE | ID: mdl-17071660

Single-molecule tracking of membrane proteins has become an important tool for investigating dynamic processes in live cells, such as cell signaling, membrane compartmentation or trafficking. The extraction of relevant parameters, such as interaction times between molecular partners or confinement-zone sizes, from the trajectories of single molecules requires appropriate statistical methods. Here we report a new tool, the speed correlation index, designed to detect transient periods of directed motion within trajectories of diffusing molecules. The ability to detect such events in a wide range of biologically relevant parameter values (speed, diffusion coefficient, and durations of the directed period) was first established on simulated data. The method was next applied to analyze the trajectories of quantum-dot-labeled GABA(A) receptors in nerve growth cones. The use of the speed correlation index revealed that the receptors had a "conveyor belt" type of motion due to temporary interactions ( approximately 4.0 s) between the receptors and the microtubules, leading to an average directed motion (velocity approximately 0.3 mum s(-1)) in the growth-cone membrane. Our observations point to the possibility of a cytoskeleton-dependent redistribution of the sensing molecules in the membrane, which could play a role in the modulation of the cell response to external signals.


Algorithms , Growth Cones/metabolism , Growth Cones/ultrastructure , Microscopy, Fluorescence/methods , Protein Transport/physiology , Receptors, GABA-A/metabolism , Receptors, GABA-A/ultrastructure , Animals , Cells, Cultured , Motion , Rats , Rats, Sprague-Dawley
18.
Methods Enzymol ; 414: 211-28, 2006.
Article En | MEDLINE | ID: mdl-17110194

Single quantum dot imaging is a powerful approach to probe the complex dynamics of individual biomolecules in living systems. Due to their remarkable photophysical properties and relatively small size, quantum dots can be used as ultrasensitive detection probes. They make possible the study of biological processes, both in the membrane or in the cytoplasm, at a truly molecular scale and with high spatial and temporal resolutions. This chapter presents methods used for tracking single biomolecules coupled to quantum dots in living cells from labeling procedures to the analysis of the quantum dot motion.


Microscopy, Fluorescence/methods , Quantum Dots , Absorption , Biotinylation , Cytoplasm/metabolism , Fluorescent Dyes/pharmacology , HeLa Cells , Humans , Models, Statistical , Nanoparticles , Nanotechnology/methods , Semiconductors , Streptavidin/chemistry , Time Factors
19.
Proc Natl Acad Sci U S A ; 100(4): 1694-9, 2003 Feb 18.
Article En | MEDLINE | ID: mdl-12574500

Single molecule studies, at constant force, of the separation of double-stranded DNA into two separated single strands may provide information relevant to the dynamics of DNA replication. At constant applied force, theory predicts that the unzipped length as a function of time is characterized by jumps during which the strands separate rapidly, followed by long pauses where the number of separated base pairs remains constant. Here, we report previously uncharacterized observations of this striking behavior carried out on a number of identical single molecules simultaneously. When several single lambda phage molecules are subject to the same applied force, the pause positions are reproducible in each. This reproducibility shows that the positions and durations of the pauses in unzipping provide a sequence-dependent molecular fingerprint. For small forces, the DNA remains in a partially unzipped state for at least several hours. For larger forces, the separation is still characterized by jumps and pauses, but the double-stranded DNA will completely unzip in less than 30 min.


DNA/chemistry , Adsorption , Models, Theoretical , Nucleic Acid Conformation
...